更新时间:2022-02-20 23:22:44点击:195
举例说明
我们来设想下面这样一个扑克场景。 这手牌来自加州某娱乐场的盲注5/10常规局,有效筹码量为1000。前面玩家弃牌,Alice在中间位置用Q♥J♥加注到30美元,被Bob在大盲位置跟注。Alice曾和Bob一起打过牌,知道他是一个无位置意识的松弱玩家,喜欢游戏大量底池。 翻牌是Q♠8♠5♦,底池现在是65。 Bob过牌,Alice为了让她的顶对得到一些价值下注40。使她惊讶的是,Bob做了一个200筹码的巨大加注! 现在轮到Alice行动,她认为这是Bob的一种非典型玩法。Bob没有一手强牌(比如55、Q8同花、好踢脚的顶对或翻前慢玩的高对)很少加注。 当然,Bob所做巨大加注让Alice感到困惑。这可能意味着Bob要么试图迫使她放弃底池,要么他害怕另一张黑桃的发出导致自己的强牌输给一手同花。顺便说一句,Alice不认为Bob拿着一副听牌,因为如果他真有一副听牌,他很可能跟注,在投入更多资金到底池之前先等待听牌的完成。 总之,Bob的加注似乎是两极化的,也就是说,他要么在诈唬要么有一手超强牌。然而,根据Alice的判断,在这种场合诈唬似乎是不可能的,她决定冷静地放弃她的顶对,等待下一个机会。 赢下底池的Bob随即从椅子上跳了起来,然后把他的底牌正面朝上甩到牌桌上,即使他清楚地知道自己不必这样做。T♦2♦! “我拿着Brunson!我无法抵挡诱惑!”(译注:扑克教父Doyle Brunson曾两次凭借同花T2夺得WSOP主赛事冠军,因此同花T2也被叫做Doyle Brunson) Alice随即笑了起来,然后礼貌地敲了敲牌桌,说道:“好牌!”当然,Alice知道她的好牌被忽悠了。如果没看到Bob的底牌,她怎么能够预知这种情况? 事实上,在类似这样的场合她很可能无法准确地抓诈唬。Bob很可能用他的所有强牌(暗三条、两对等等)做同样的事情。Bob在这种场合可能拿到比诈唬牌多很多的价值牌,Alice知道她做出了长期而言正确的决策。这意味着,如果类似的情况在将来发生,她将再次正确地弃牌。 虽说如此,Bob的亮牌对她很有用。Alice知道T2(至少同花T2)是一手Bob喜欢游戏的牌,因此下次她分析Bob的范围时肯定会把这手牌加进去。 好的,我们再回到之前的问题: 为什么Bob的大诈唬即使对抗Alice这样的强手也非常奏效? 答案是,这种诈唬极其少见! 换句话说,Bob的诈唬是例外,而非常例。如果Alice注意到Bob诈唬太多,她将从不放弃自己的牌。Alice弃牌的唯一原因是因为她知道Bob在那种场合诈唬不够多!我们现在做一个快速的数学计算来证实这一点。假设Alice的假定是正确的,根据她的判断,Bob可能拿到以下底牌之一:AQ,Q8s(s代表suited,指同样花色),88,55和T2s。 我们来做一次组合分析。鉴于Alice的底牌已经有一张Q♥,而公共牌是Q♠8♠5♦,剩余的组合应该是: